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Full marks are not necessarily awarded for a correct answer with no working. Answers must be
supported by working and/or explanations. In particular, solutions found from a graphic display
calculator should be supported by suitable working. For example, if graphs are used to find a solution,
you should sketch these as part of your answer. Where an answer is incorrect, some marks may be
given for a correct method, provided this is shown by written working. You are therefore advised to show
all working.

Section A

Answer all questions. Answers must be written within the answer boxes provided. Working may be
continued below the lines, if necessary.

1. [Maximum mark: 6]

Consider the complex number z = 2 I ; .

(@) Express z in the form a + ib, where a, b e Q. [2]
(b) Find the exact value of the modulus of z. [2]
(c) Find the argument of z, giving your answer to 4 decimal places. [2]
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[Maximum mark: 5]

The polynomial x*+ px’+ gx*+ rx + 6 is exactly divisible by each of (x — 1), (x — 2) and
(x—3).

Find the values of p, g and r.
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[Maximum mark: 6]

The random variable X has a normal distribution with mean = 50 and variance ¢ = 16.

(a) Sketch the probability density function for X, and shade the region representing

P(u-20<X<u+o). [2]
(b) Find the value of P(u—20< X< u+ o). [2]
(c) Find the value of k for which P(u— ko< X< u+ko)=0.5. [2]
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4. [Maximum mark: 8]

Consider the following diagram.

B C

The sides of the equilateral triangle ABC have lengths 1 m. The midpoint of [AB] is
denoted by P. The circular arc AB has centre, M, the midpoint of [CP].

(@) () Find AM.
(i) Find AMP in radians. 5]

(b) Find the area of the shaded region. [3]
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5. [Maximum mark: 6]
3n+1
(@) Express the binomial coefficient 32 as a polynomial in n. [3]
_ ] 3n+1 .
(b) Hence find the least value of n for which 3 5 > 10°. [3]
n p—
I_ 12EP06 _l




6.

-7- M18/5/MATHL/HP2/ENG/TZ2/XX
[Maximum mark: 7]

Use mathematical induction to prove that (1 —a)'> 1 —na for {n:neZ",n>2} where
O<ax<l.
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[Maximum mark: 5]

A point P moves in a straight line with velocity v ms™ given by v(f) = ¢~ 8¢ at time
¢t seconds, where 1> 0.

(a) Determine the first time ¢, at which P has zero velocity. [2]
(b) (i) Find an expression for the acceleration of P at time ¢.

(i)  Find the value of the acceleration of P at time ¢,. [3]
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[Maximum mark: 7]

The random variable X has a binomial distribution with parameters n and p.
It is given that E(X) =3.5.

(@) Find the least possible value of n. [2]
It is further given that P(X' < 1) = 0.09478 correct to 4 significant figures.

(b) Determine the value of n and the value of p. [5]
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Do not write solutions on this page.

Section B
Answer all questions in the answer booklet provided. Please start each question on a new page.
9. [Maximum mark: 13]

The number of taxis arriving at Cardiff Central railway station can be modelled by a Poisson
distribution. During busy periods of the day, taxis arrive at a mean rate of 5.3 taxis every
10 minutes. Let T represent a random 10 minute busy period.

(@) (i) Find the probability that exactly 4 taxis arrive during T.
(i)  Find the most likely number of taxis that would arrive during T.

(i)  Given that more than 5 taxis arrive during T, find the probability that exactly
7 taxis arrive during T. [7]

During quiet periods of the day, taxis arrive at a mean rate of 1.3 taxis every 10 minutes.

(b) Find the probability that during a period of 15 minutes, of which the first 10 minutes is
busy and the next 5 minutes is quiet, that exactly 2 taxis arrive. [6]
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Do not write solutions on this page.

10.

[Maximum mark: 18]

Consider the expression f(x) = tan [x + g] cot[% - xj.

(@) (i) Sketch the graph of y =f(x) for —% <x< %

(i)  With reference to your graph, explain why f is a function on the given domain.

(i)  Explain why f has no inverse on the given domain.

(iv) Explain why f is not a function for — % <x< %

The expression f(x) can be written as g(¢) where ¢ =tan x.

1+¢

(b) Show that g(7) = (ﬁj :

(c) Sketch the graph of y = g(¢) for t <0. Give the coordinates of any intercepts and the
equations of any asymptotes.

(d) Let a, B be the roots of g(f) =k, where 0 <k<1.
(i) Find a and B interms of k.

(i) Showthat a+ p<—-2.

[5]

[3]

[3]

[7]
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Do not write solutions on this page.

1. [Maximum mark: 19]

Acurve C is given by the implicit equation x +y — cos(xy) =0.

dy
(@) Showthat —=—

P 5]

1 + ysin(xy)
1+ xsin(xy) )

(b) The curve xy = —g intersects C at P and Q.

(i)  Find the coordinates of P and Q.

(i)  Given that the gradients of the tangents to C at P and Q are m, and m,
respectively, show that m, xm,=1. [7]

(c) Find the coordinates of the three points on C, nearest the origin, where the tangent is
parallel to the line y = —x. [7]
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